Strengthening the Resiliency of a Coastal Transportation System through Integrated Simulation of Storm Surge, Inundation, and Nonrecurrent Congestion in Northeast Florida
نویسندگان
چکیده
The Multimodal Transportation Educational Virtual Appliance (MTEVA) is an application developed within the framework of the broader Coastal Science Educational Virtual Appliance (CSEVA) to enhance coastal resiliency through the integration of coastal science and transportation congestion models for emergency situations. The first generation MTEVA enabled users to perform and visualize simulations using an integrated storm surge and inundation model (CH3D-SSMS) and transportation evacuation/return modeling system that supports contraflow in a simple synthetic domain (order of tens of intersections/roads) under tropical storm conditions. In this study, the second generation MTEVA has been advanced to apply storm surge and evacuation models to the greater Jacksonville area of Northeast Florida (order tens of thousands of transportation intersections/roads). To support solving the evacuation problem with a significantly larger transportation network, new models have been developed, including a heuristic capable of efficiently solving large-scale problems. After initial testing on several smaller stand-alone OPEN ACCESS J. Mar. Sci. Eng. 2014, 2 288 transportation networks (e.g., Anaheim, Winnipeg), the heuristic is applied to the Jacksonville area transportation network. Results presented show the heuristic produces a nearly optimal (average optimality gap <0.5%) solution in 90% less wall clock time than needed by the exact solver. The MTEVA’s new capabilities are then demonstrated through the simulation of a Hurricane Katrina-sized storm impacting the region and studying how the evacuation patterns are affected by the closing of roads due to flooding and bridges due to high winds. To ensure residents are able to leave the area, evacuations are shown to need to have begun at least 36 h prior to landfall. Additionally it was shown that large numbers of residents would be left behind if evacuation does not begin within 18 h of landfall and ~97% would not escape if evacuation did not begin until landfall, when areas of the coast that are the most prone to flooding are already cut off from the ―safe‖ nodes of the transportation network.
منابع مشابه
Modeling Flood Inundation Induced by River Flow and Storm Surges over a River Basin
Low-lying coastal regions and their populations are at risk during storm surge events and high freshwater discharges from upriver. An integrated storm surge and flood inundation modeling system was used to simulate storm surge and inundation in the Tsengwen River basin and the adjacent coastal area in southern Taiwan. A three-dimensional hydrodynamic model with an unstructured grid was used, wh...
متن کاملA CYCLONE INDUCED STORM SURGE FORECASTING MODEL FOR THE COAST OF BANGLADESH WITH APPLICATION TO THE CYCLONE `SIDR'
The coast of Bangladesh has a specialty in terms of high bending and many off- shore islands. Incorporation of the coastline and island boundaries properly in the numerical scheme is essential for accurate estimation of water levels due to surge. For that purpose a numerical scheme consisting of very fine mesh is required along the coastal belt, whereas this is unnecessary away from the coast. In...
متن کاملModeling and Simulation of Tsunami and Storm Surge Hydrodynamic Loads on Coastal Bridge Structures
Bridge structures along the coasts are often subjected to hydrodynamics loads of various forms and intensities. The most dramatic loads are those due to tsunamis and storm surges as vividly demonstrated by images of the Dec. 2004 Indian Ocean Tsunami and the Sept. 2005 Katrina Hurricane in the Gulf of Mexico. Other loads include wave impact, current induced scour, and floating debris impact. Th...
متن کاملElevation Uncertainty in Coastal Inundation Hazard Assessments
Coastal inundation has been identified as an important natural hazard that affects densely populated and built-up areas (Subcommittee on Disaster Reduction, 2008). Inundation, or coastal flooding, can result from various physical processes, including storm surges, tsunamis, intense precipitation events, and extreme high tides. Such events cause quickly rising water levels. When rapidly rising w...
متن کاملLimitations and Potential of Satellite Imagery to Monitor Environmental Response to Coastal Flooding
RAMSEY, E. III; WERLE, D.; SUZUOKI, Y.; RANGOONWALA, A., and LU, Z., 2012. Limitations and potential of satellite imagery to monitor environmental response to coastal flooding. Journal of Coastal Research, 28(2), 457–476. West Palm Beach (Florida), ISSN 0749-0208. Storm-surge flooding and marsh response throughout the coastal wetlands of Louisiana were mapped using several types of remote sensi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014